INAR models with dynamic coefficient driven by a SRE

Paolo Gorgi

Department of Statical Sciences, University of Padova Department of Econometrics, VU University Amsterdam gorgi@stat.unipd.it August 23rd 2016

Università degli Studi di Padova

1 Background

- 2 INAR with dynamic coefficient
- 3 Some statistical properties
- 4 Simulation and empirical illustration

- INteger-valued AutoRegressive (INAR) models are one of the most popular models for count time series.
- The thinning operator "o" satisfies

 $\alpha \circ N \sim Bin(N, \alpha),$

for an $N \in \mathbb{N}$ and $\alpha \in (0, 1)$.

■ The first order INAR model is given by

$$y_t = \alpha \circ y_{t-1} + \varepsilon_t, \ t \in \mathbb{Z},$$

where $\{\varepsilon_t\}_{t\in\mathbb{Z}}$ is an iid sequence of count variables.

- Real time series data often exhibit changing dynamic behaviors and the classic INAR model may not be able to properly handle these situations.
- We introduce a class of INAR models that allows the survival probability α_t to be updated at each time period using past information.
- Time varying survival probabilities have been also considered by Zheng *et al.* (2007) and Zheng and Basawa (2008). The latter authors specify the survival probability as logit $\alpha_t = \omega + \tau y_{t-1}$.

- We allow the survival probability α to vary over time relying on the GAS framework of Creal *et al.* (2013) and Harvey (2013).
- The GAS-INAR model is described by the following equations

$$y_t = \alpha_t \circ y_{t-1} + \varepsilon_t,$$

logit $\alpha_{t+1} = \omega + \beta \operatorname{logit} \alpha_t + \tau s_t,$

• The innovation s_t is the score of the predictive likelihood, i.e.

$$s_t = \partial \log p(y_t | y_{t-1}, \alpha_t) / \partial \operatorname{logit} \alpha_t,$$

where $p(y_t | \alpha_t, y_{t-1})$ is the pmf of y_t given y_{t-1} and α_t .

- ML estimation can be easily performed as the likelihood function is available in closed form.
- Using the data $\{y_t\}_{t=1}^T$, the **filtered probability** is obtained as

logit $\hat{\alpha}_{t+1}(\theta) = \omega + \beta \operatorname{logit} \hat{\alpha}_t(\theta) + \tau \hat{s}_t$,

where logit $\hat{\alpha}_1(\theta) = \omega/(1-\beta)$.

Then, the MLE $\hat{\theta}_T$ is the maximizer of the likelihood function

$$\hat{L}_T(\theta) = \sum_{t=2}^T \log p(y_t | \hat{\alpha}_t(\theta), y_{t-1}),$$

over the parameter set Θ .

- The GAS-INAR model should not be considered a Data Generating Process (DGP) but a filter to approximate an unknown DGP (Blasques *et al.*, 2015).
- The conditional KL divergence is given by

$$KL_t(\theta) = \sum_{x=0}^{\infty} \log \left(\frac{p^o(x|I_{t-1})}{p(x|\tilde{\alpha}_t(\theta), y_{t-1})} \right) p^o(x|I_{t-1}),$$

where $p^{o}(x|I_{t-1})$ is the true conditional pmf of the observations.

The pseudo-true parameter θ* is defined as the minimizer of the average KL divergence EKL_t(θ) in the parameter set Θ.

- (C.1) The DGP $\{y_t\}_{t\in\mathbb{Z}}$ is stationary and ergodic count process.
- (C.2) The moments condition $Ey_t^2 < \infty$ is satisfied.
- (C.3) The compact set Θ is such that $E \log \Lambda_t(\theta) < 0, \forall \theta \in \Theta$.
- (C.4) The model is identifiable in the compact set Θ .

Theorem

Let conditions (C.1)-(C.4) hold, then the MLE $\hat{\theta}_T$ is strongly consistent

$$\hat{\theta}_T \xrightarrow{a.s.} \theta^*, \ T \to \infty.$$

Consider DGPs of the form

$$y_t = \alpha_t^o \circ y_{t-1} + \varepsilon_t, \ \varepsilon_t \sim \mathcal{P}(5),$$

where the DGPs differ for the specification of α_t^o .

• The following four dynamics are considered:

- (1) **Fast sine**: $\alpha_t^o = 0.5 + 0.25 \sin(\pi t/100)$.
- (2) Slow sine: $\alpha_t^o = 0.5 + 0.25 \sin(\pi t/250)$.
- (3) **Fast steps**: $\alpha_t^o = 0.25 I_{[-1,0]} (\sin(\pi t/100)) + 0.75 I_{(0,1]} (\sin(\pi t/100)).$
- (4) Slow steps: $\alpha_t^o = 0.25 I_{[-1,0]} (\sin(\pi t/250)) + 0.75 I_{(0,1]} (\sin(\pi t/250)).$

Simulations: filtered paths for α_t

Figure: Confidence bounds for the filtered paths of the surviving probability.

	Point prediction (MSE)						
	Fast sine	Slow sine	Fast steps	Slow steps			
INAR	0.242	0.257	0.322	0.356			
rc-INAR	0.112	0.111	0.145	0.132			
GAS-INAR	0.077	0.060	0.101	0.072			
	Pmf prediction (KL divergence)						
	Pm	r prediction	i (NL aiverg	gence)			
	Fast sine	Slow sine	Fast steps	Slow steps			
INAR	Fast sine 0.238	Slow sine	Fast steps 0.412	Slow steps 0.442			
INAR rc-INAR	Pm Fast sine 0.238 0.117	Slow sine 0.253 0.114	Fast steps 0.412 0.212	Slow steps 0.442 0.185			

Table: MSE and KL divergence between the true DGP and the different models. The rc-INAR model is the model of Zheng and Basawa (2008).

Crime time series

Figure: Monthly number of criminal reports in Blacktown, Australia, with empirical autocorrelation functions.

	ω	β	τ	μ	σ^2	log-lik	pvalue	AIC
GAS-NBINAR	-0.907 (0.338)	0.965 (0.027)	0.135 (0.055)	6.083 (0.481)	14.155 (1.853)	-662.91	0.002	1335.82
NBINAR	-0.401 (0.176)	-	-	5.586 (0.456)	15.265 (2.125)	-669.03	-	1344.07
GAS-PoINAR	-1.258 (0.294)	0.967 (0.019)	0.141 (0.033)	6.539 (0.313)	-	-695.04	0.000	1398.24
PoINAR	-0.613 (0.140)	-	-	6.046 (0.323)	-	-714.58	-	1433.21

Table: ML estimate for different specifications.

Filtered survival probability

Figure: Filtered survival probability from the GAS-NBINAR model with confidence bounds.

Out-of-sample results

	Point forecasts (MSE)						
	h = 1	<i>h</i> = 2	<i>h</i> = 3	<i>h</i> = 4	h = 5	<i>h</i> = 6	
GAS-NBINAR	15.77	20.15	20.56	21.51	21.36	21.23	
NBINAR	16.51	21.47	22.61	23.70	23.85	23.72	
GAS-PoINAR	16.33	20.66	21.18	21.98	21.82	21.52	
PoINAR	17.00	21.82	22.86	23.79	23.91	23.78	
	Pmf forecasts (log score)						
	h = 1	<i>h</i> = 2	<i>h</i> = 3	<i>h</i> = 4	h = 5	<i>h</i> = 6	
GAS-NBINAR	-2.73	-2.82	-2.83	-2.85	-2.85	-2.85	
NBINAR	-2.75	-2.85	-2.88	-2.91	-2.91	-2.91	
GAS-PoINAR	-2.83	-2.96	-2.98	-3.00	-3.00	-2.98	

Table: Forecast MSE and log score criterion computed in the last 100 observations for different forecast horizons h.

- We provide a dynamic specification for the INAR survival probability based on the score framework of Creal et al. (2013) and Harvey (2013).
- The model should not be interpreted as a DGP but as a filter. In this direction, we show the consistency of ML estimation.
- Simulation and empirical experiments illustrate the flexibility and usefulness of the proposed model.

- BLASQUES, F., KOOPMAN, S. J., AND LUCAS, A. (2015). Information-theoretic optimality of observation-driven time series models for continuous responses. *Biometrika* 102:325–343.
- CREAL, D., KOOPMAN, S. J., AND LUCAS, A. (2013). Generalized autoregressive score models with applications.. *Journal of Applied Econometrics*, 28(5):777–795.
- HARVEY (2013). Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series. *New York: Cambridge University Press.*