Missing observations in observation-driven time series models

Paolo Gorgi

Co-authors: **F. Blasques and S.J. Koopman** VU University Amsterdam May 25th 2018

2 Inconsistency of the setting-to-zero method

3 A consistent indirect inference estimator

GAS models with missing data

The class of Generalized Autoregressive Score (GAS) models of is

$$y_t \sim p(y_t | f_t; \theta), \quad f_{t+1} = \omega + \beta f_t + \alpha s_t,$$

where score innovation s_t is given by

$$s_t = S_t u_t, \quad u_t = \frac{\partial \log p(y_t | f_t; \theta)}{\partial f_t},$$

and S_t is a scaling factor.

- Missing data caused by external events.
- Unequally spaced time series.
- Mixed frequency data.

How are missing observations handled in practice?

GAS models with missing observations are estimated using the **setting-to-zero** method.

BUCCHERI ET AL. (2017), DELLE MONACHE ET AL. (2016), LUCAS ET AL. (2016), KOOPMAN ET AL. (2015) and CREAL ET AL. (2014).

Idea: set the score innovation to zero when a missing observation occurs.

Missing observations: sample of data $\{y_1, y_2, \ldots, y_T\}$ where

 $\begin{cases} y_t \text{ is observed}, & \text{if } I_t = 1\\ y_t \text{ is not observed}, & \text{if } I_t = 0. \end{cases}$

Setting-to-zero method:

• Step 1: recover the filtered parameter setting the score to zero when an observation is missing

$$\hat{f}_{t+1}(\theta) = \omega + \beta \hat{f}_t(\theta) + \alpha I_t s_t.$$

Step 2: plug-in the filter into the likelihood (*pseudo likelihood*)

$$\hat{L}_T(\theta) = T^{-1} \sum_{t=1}^T I_t \log p(y_t | \hat{f}_t(\theta); \theta),$$

Step 3: obtain the *pseudo ML estimator* $\hat{\theta}_T$ maximizing $\hat{L}_T(\theta)$.

The setting-to-zero method is:

- Simple to implement.
- Intuitive and it can be justified by some arguments.
- **However**, it leads to inconsistent inference.

In this paper:

- We show that the **pseudo ML is inconsistent** for a local mean GAS model.
- We propose an indirect inference estimator that delivers consistent inference for GAS models with missing data.

Inconsistency of the setting-to-zero method

Consider the Gaussian local mean GAS model:

$$y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2),$$
$$\mu_{t+1} = \omega + \beta \mu_t + \alpha (y_t - \mu_t).$$

Note: this model is in fact a linear model and it can be estimated by exact ML using the Kalman filter.

- Setting-to-zero method: it is straightforward to obtain that the pseudo ML estimator of σ² is inconsistent.
- We show the non-trivial result that the **pseudo ML** is inconsistent also for α and β .

We assume that the missing observation process $\{I_t\}_{t\in\mathbb{Z}}$ is an iid Bernoulli sequence with success probability π .

Theorem (inconsistency of α and β)

The pseudo ML estimator $\hat{\theta}_T$ obtained from the **setting-to-zero** method for the local mean GAS model is not consistent. In particular, there exists an $\epsilon > 0$ such that

$$\mathbb{P}\left(\liminf_{T\to\infty} \|\hat{\theta}_T - \theta_0\| > \epsilon\right) = 1,$$

for some $\theta = (\alpha, \beta)$ and some $\pi \in (0, 1)$.

 This result shows that even the dependence structure of the model is inconsistently estimated.

Simulation: local mean model

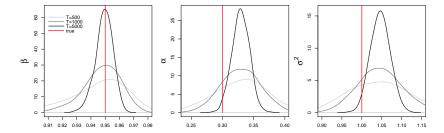
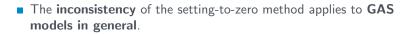


Figure: Small sample distribution of the pseudo ML estimator for the Gaussian local mean model. Different sample sizes are considered and $\pi = 0.75$.



Example: the conditional volatility Student-*t* GAS model of Creal et al. (2013) and Harvey (2013) is

$$y_t = \sqrt{h_t} \varepsilon_t, \quad \varepsilon_t \sim t_\nu,$$
$$h_{t+1} = \omega + \beta h_t + \alpha \left[\frac{(\nu+1)y_t^2}{(\nu-2) + y_t^2 h_t^{-1}} - h_t \right]$$

where ω , β , α and ν are parameters to be estimated.

Example: Student-t GAS (ii)

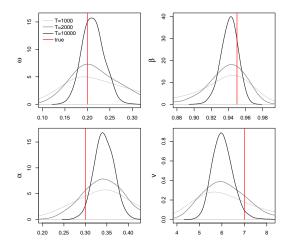


Figure: Distribution for conditional volatility Student's t model.

VRIJE UNIVERSITEIT

AMSTERDAM

VU

A consistent indirect inference estimator

Idea: remove the bias of the setting-to-zero method by indirect inference.

We propose the following indirect inference estimator:

- Simulate S series from the GAS model $\{y_{i,t}(\bar{\theta})\}_{t=1}^T$, i = 1, ..., S.
- Introduce missing observations in the simulations $y_{i,t}(\bar{\theta})$ at time points t where the real observations y_t are missing.
- Obtain **pseudo ML** estimator using the setting-to-zero method:

$$\hat{L}_{S,T}(\theta,\bar{\theta}) = \frac{1}{S} \sum_{i=1}^{S} \hat{L}_{i,T}(\theta,\bar{\theta}), \quad \hat{\theta}_{S,T}(\bar{\theta}) = \underset{\theta \in \Theta}{\operatorname{arg sup}} \hat{L}_{S,T}(\theta,\bar{\theta}).$$

Finally, the **indirect inference** estimator $\tilde{\theta}_{S,T}$ is

$$\tilde{\theta}_{S,T} = \underset{\bar{\theta} \in \Theta}{\operatorname{arg inf}} \left\| \hat{\theta}_{S,T}(\bar{\theta}) - \hat{\theta}_T \right\|.$$

Assumption: data missing at random and missing values process I_t is stationary with $P(I_t = 1) > 0$.

Theorem (asymptotic distribution)

Under some additional conditions, we obtain that

$$\sqrt{\mathcal{T}} \Big(ilde{ heta}_{\mathcal{S},\mathcal{T}} - heta_0 \Big) \stackrel{d}{ o} \mathsf{N}(0,W_{\mathcal{S}}) \quad \textit{as} \quad \mathcal{T} o \infty,$$

where

$$W_{\mathcal{S}} := \left(1 + rac{1}{\mathcal{S}}
ight) \left[rac{\partial heta^*(heta_0)}{\partial heta^ op}
ight]^{-1} V(heta_0) \left[rac{\partial heta^*(heta_0)}{\partial heta}^ op
ight]^{-1}$$

where $V(\theta_0)$ denotes the asymptotic variance $V(\theta_0) := \Omega^*(\theta_0)^{-1} (\Sigma^*(\theta_0) - K^*(\theta_0)) \Omega^*(\theta_0)^{-1}.$

- We compare the performance of the **indirect inference** estimator with **exact ML** and **pseudo ML**.
- In general, exact ML is infeasible but we consider a local mean GAS model for which exact ML is available via the Kalman filter.
- **Gaussian local mean GAS** model:

$$y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2),$$

 $\mu_{t+1} = \omega + \beta \mu_t + \alpha (y_t - \mu_t).$

 \sim

Note: this model can be shown to be an ARMA(1,1) model.

		$\pi = 0.40$			$\pi = 0.60$		
		β	α	σ^2	β	α	σ^2
	PML	0.028	0.120	0.204	0.023	0.075	0.121
T = 500	ML	0.029	0.060	0.109	0.023	0.047	0.087
	П	0.025	0.064	0.118	0.020	0.051	0.091
	PML	0.018	0.108	0.187	0.016	0.065	0.105
T = 1000	ML	0.018	0.042	0.078	0.016	0.033	0.058
	11	0.014	0.045	0.084	0.013	0.035	0.062

Table: Mean squared error (MSE) of estimators obtained from 500 simulations with S = 10. The true parameter vector is $\theta = (0.95, 0.3, 1)^{\top}$.

We perform an experiment to access the performance of the **Indirect Inference** and **pseudo ML** estimator with a real dataset.

- **Dataset:** daily log-returns of the **S&P500 stock index** from January 2000 to December 2016.
- **Model:** conditional variance **Student**-*t* **GAS model**.

Experiment:

- Estimate the parameter $\theta = (\omega, \beta, \alpha, \nu)^{\top}$ using the full dataset.
- Remove observations using a Bernoulli process with success probability π and estimate the model using this new dataset.
- Repeat previous point multiple times and compare the estimates with missing data with full-sample estimate.

Pseudo ML

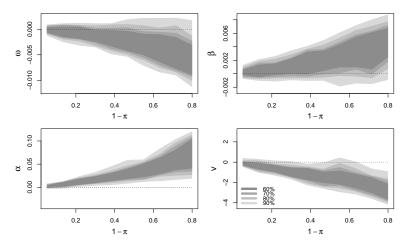


Figure: Bias of the pseudo ML estimator wrt full sample estimator for different π . Grey areas represent confidence bounds of the bias.

Indirect Inference

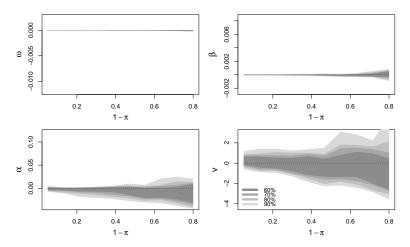


Figure: Bias of the indirect inference estimator wrt full sample estimator for different π . Grey areas represent confidence bounds of the bias.

- We prove that the **setting-to-zero method** for estimating GAS models with missing data leads to inconsistent inference.
- We propose an indirect inference estimator that delivers consistent parameter estimates.
- The proposed estimator shows comparable accuracy to the infeasible exact ML estimator.