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Motivation

Why is invertibility needed?

1) Ensure the consistency of the MLE.
2) Uncover the true path of the time varying parameter (even if

θ0 is known).

Problem: existing conditions for invertibility are often
useless in practice. This because we need to impose severe
restrictions that are unreasonable in empirical applications.

Solution: we derive the consistency of the MLE considering
feasible invertibility conditions that can cover situations of
practical interest.
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Motivation: the model

Consider the Beta-t-GARCH model with leverage effects of
Creal et al. (2013) and Harvey (2013)

yt =
√
ftεt , εt ∼ tv (0, 1),

ft+1 = ω + βft + (α + γdt)
(v + 1)y2

t

(v − 2) + f −1
t y2

t

,

where dt = 1 if yt ≤ 0 and dt = 0 otherwise.

To ensure the consistency of the MLE, the parameter region Θ
where the likelihood is maximized has to satisfy

E log

∣∣∣∣∣β + (α + γdt)
(v + 1)y4

t(
(v − 2)ω̄ + y2

t

)2

∣∣∣∣∣ < 0, ∀ θ ∈ Θ.
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Motivation: the parameter region
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Figure: Invertibility parameter region. The crosses denote the parameter
estimate using monthly log-differences of the S&P 500 stock index.
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Observation-driven models

We observe data {yt}nt=1, and we consider the following model

yt |ft ∼ p(yt |ft , θ),

ft+1 = φ(ft , yt , θ), t ∈ Z,

where p(·|ft ; θ) is a density function, θ ∈ Θ a parameter vector
and φ is a continuous function.

Under correct specification, the data generating process (DGP)
satisfies the model equations at θ = θ0 and f ot denotes the true
time varying parameter.

We are interested in ML estimation of the static parameter θ
and, in particular, the consistency of the MLE.
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The likelihood function

Using the observed data, the filtered parameter is obtained as

f̂t+1(θ) = φ(f̂t(θ), yt , θ), t ∈ N,

for an initial value f̂1(θ) ∈ Fθ ⊆ R.

The MLE is then obtained maximizing the likelihood

L̂n(θ) = n−1
n∑

t=1

log p(yt |f̂t(θ), θ),

over the parameter set Θ.
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Invertibility

The filtered parameter {f̂t(θ)}t∈N at θ is invertible if∣∣∣f̂t(θ)− f̃t(θ)
∣∣∣ a.s.−−→ 0, as t →∞.

for any f̂1(θ) ∈ Fθ, where {f̃t(θ)}t∈Z is a stochastic sequence.

Invertibility guarantees that the true time varying parameter f ot
can be recovered, i.e. |f̂t(θ0)− f ot |

a.s.−−→ 0.

Invertibility is not merely a technical condition, see Sorokin
(2011) and Wintenberger (2013).
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How can we ensure invertibility?

As in Straumann and Mikosh (2006), sufficient conditions for
invertibility can be obtained on the basis of Theorem 3.1 of
Bougerol (1993).

Bougerol’s theorem provides general conditions for stability of
stochastic processes.

We obtain that {f̂t(θ)}t∈N is invertible if

E logΛt(θ) < 0,

where

Λt(θ) = sup
f

∣∣∣∣∂φ(f , yt , θ)

∂f

∣∣∣∣ .
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Invertibility in practice

In practice E log Λt(θ) < 0 cannot be checked because Λt(θ)
depends on the unknown DGP.

This leads to either a very small region Θ where the likelihood
should maximized

θ̂n = arg max
θ∈Θ

L̂n(θ),

In practical applications, invertibility is ignored and therefore the
consistency of the MLE is not guaranteed.
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MLE on an empirical region

To handle this issue, we define the MLE on a parameter region
that satisfies an empirical version of the invertibility condition
E log Λt(θ) < 0, namely

θ̃n = arg max
θ∈Θ̂n

L̂n(θ),

where

Θ̂n =

{
θ ∈ Θ̄ :

1

n

n∑
t=1

log Λt(θ) < 0

}
.

Wintenberger (2013) first proposed the estimation of the
parameter region for the QMLE of the EGARCH(1,1) model.
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Consistency of the MLE

We consider the following conditions:

(C.1) The data generating process is stationary with E log Λt(θ0) < 0.

(C.2) The model is identifiable.

(C.3) The log Λt(θ) is a.s. continuous and it has a finite first moment.

(C.4) The log-likelihood function is uniformly continuous with respect to f̂t(θ).

(C.5) The first moment of the likelihood function is uniformly bounded.

Theorem

Let conditions (C.1)-(C.5) hold, then the MLE θ̃n is strongly consistent,
i.e.

θ̃n
a.s.−−→ θ0, n −→∞.

Furthermore, |f̂n(θ̃n)− f on |
a.s.−−→ 0 as n goes to infinity.
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Example 1: the model

The Beta-t-GARCH model with leverage effects of Creal et
al. (2013) and Harvey (2013) is

yt =
√
ftεt , εt ∼ tv (0, 1),

ft+1 = ω + βft + (α + γdt)
(v + 1)y2

t

(v − 2) + f −1
t y2

t

,

where dt = 1 if yt ≤ 0 and dt = 0 otherwise.

The invertibility condition E log Λt(θ) < 0 is given by

E log

∣∣∣∣∣β + (α + γdt)
(v + 1)y4

t(
(v − 2)ω̄ + y2

t

)2

∣∣∣∣∣ < 0, ∀ θ ∈ Θ.
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Example 1: the parameter region
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Figure: Invertibility regions obtained considering the monthly log-differences of
the S&P 500 stock index.
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Example 2: the model

The dynamic autoregressive model of Blasques et al. (2014)
and Delle Monache and Petrella (2016) is

yt = ftyt−1 + σεt , εt ∼ tv ,

ft+1 = ω + βft + α
(yt − ftyt−1)yt−1

1 + v−1σ−2(yt − ftyt−1)2
,

The invertibility condition E log Λt(θ) < 0 is given by

E log max
{∣∣∣β − αy2

t

∣∣∣, ∣∣∣β +
α

8
y2
t

∣∣∣} < 0, ∀ θ ∈ Θ.

Sufficient conditions leads to a degenerate region with α = 0.
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Example 2: the parameter region

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

α

β

x

Figure: Invertibility region obtained considering the monthly log-differences of
the US unemployment claims.
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Example 3: the model

The fat-tailed location model of Harvey and Luati (2014) is
given by

yt = ft + σεt , εt ∼ tv ,

ft+1 = ω + βft + α
yt − ft

1 + v−1σ−2(yt − ft)2
,

The coefficient Λt(θ) is available in closed form but the
expression is quite complicated and therefore not reported.
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Example 3: the parameter region
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Figure: Invertibility regions obtained considering the monthly differences of the
US CP inflation series.
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Concluding remarks

We have derived consistency conditions for the MLE of a wide
class of observation-driven time series models.

The appealing features of our results is that invertibility is
feasible to be checked and the theory remains valid also under
misspecification.

The practical relevance of the theory is shown through several
practical examples.
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